alpha-Lipoic acid prevents the increase in atherosclerosis induced by diabetes in apolipoprotein E-deficient mice fed high-fat/low-cholesterol diet.
نویسندگان
چکیده
Considerable evidence indicates that hyperglycemia increases oxidative stress and contributes to the increased incidence of atherosclerosis and cardiovascular complications in diabetic patients. To examine the effect of alpha-lipoic acid, a potent natural antioxidant, on atherosclerosis in diabetic mice, 3-month-old apolipoprotein (apo) E-deficient (apoE(-/-)) mice were made diabetic by administering streptozotocin (STZ). At 4 weeks after starting the STZ administration, a high-fat diet with or without alpha-lipoic acid (1.65 g/kg) was given to the mice and to nondiabetic apoE(-/-) controls. At 20 weeks, markers of oxidative stress were significantly lower in both the diabetic apoE(-/-) mice and their nondiabetic apoE(-/-) controls with alpha-lipoic acid supplement than in those without it. Remarkably, alpha-lipoic acid completely prevented the increase in plasma total cholesterol, atherosclerotic lesions, and the general deterioration of health caused by diabetes. These protective effects of alpha-lipoic acid were accompanied by a reduction of plasma glucose and an accelerated recovery of insulin-producing cells in the pancreas, suggesting that part of its effects are attributable to protecting pancreatic beta-cells from damage. Our results suggest that dietary alpha-lipoic acid is a promising protective agent for reducing cardiovascular complications of diabetes.
منابع مشابه
Resveratrol protects against diet-induced atherosclerosis by reducing low-density lipoprotein cholesterol and inhibiting inflammation in apolipoprotein E-deficient mice
Objective(s):Resveratrol (RES) is a polyphenol compound that has been shown a promising cardioprotective effect. However, some reports have yielded conflicting findings. Herein, we investigated the anti-atherosclerotic effects of RES in apolipoprotein E (apo E)-deficient mice on a high cholesterol diet. Materials and Methods: Firstly, atherosclerosis was induced by feeding a high cholesterol di...
متن کاملDietary alpha-lipoic acid supplementation inhibits atherosclerotic lesion development in apolipoprotein E-deficient and apolipoprotein E/low-density lipoprotein receptor-deficient mice.
BACKGROUND Vascular inflammation and lipid deposition are prominent features of atherosclerotic lesion formation. We have shown previously that the dithiol compound alpha-lipoic acid (LA) exerts antiinflammatory effects by inhibiting tumor necrosis factor-alpha- and lipopolysaccharide-induced endothelial and monocyte activation in vitro and lipopolysaccharide-induced acute inflammatory response...
متن کاملDietary -Lipoic Acid Supplementation Inhibits Atherosclerotic Lesion Development in Apolipoprotein E– Deficient and Apolipoprotein E/Low-Density Lipoprotein Receptor–Deficient Mice
Background—Vascular inflammation and lipid deposition are prominent features of atherosclerotic lesion formation. We have shown previously that the dithiol compound -lipoic acid (LA) exerts antiinflammatory effects by inhibiting tumor necrosis factor– and lipopolysaccharide-induced endothelial and monocyte activation in vitro and lipopolysaccharide-induced acute inflammatory responses in vivo. ...
متن کاملEffects of streptozotocin-induced diabetes in apolipoprotein AI deficient mice.
During the past decade a number of investigators have attempted to develop mouse models of diabetic macrovascular disease. Hyperglycemia might increase vascular damage because it increases oxidant stress. For this reason we studied animals that were deficient in HDL; HDL is widely believed to protect against oxidant stress. An inbred line of mice doubly deficient in LDL receptor and apoAI was m...
متن کاملDiet-induced occlusive coronary atherosclerosis, myocardial infarction, cardiac dysfunction, and premature death in scavenger receptor class B type I-deficient, hypomorphic apolipoprotein ER61 mice.
BACKGROUND Normal chow (low fat)-fed mice deficient in both the HDL receptor SR-BI and apolipoprotein E (SR-BI/apoE dKO) provide a distinctive model of coronary heart disease (CHD). They exhibit early-onset hypercholesterolemia characterized by unesterified cholesterol-rich abnormal lipoproteins (lamellar/vesicular and stacked discoidal particles), occlusive coronary atherosclerosis, spontaneou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Diabetes
دوره 55 8 شماره
صفحات -
تاریخ انتشار 2006